1.1 实验内容
GARCH模型是对金融数据波动性进行描述的方法,为大量的金融序列提供了有效的分析方法,它是迄今为至最常用的、最便捷的异方差序列拟合模型。本次实验运用R语言利用上海证券综合指数进行GARCH模型的分析,包括计算股票指数的收益率,实现收益率的可视化 ,计算一些基本统计量,绘制股指收益率的ACF和PACF图,检验收益率序列的ARCH效应,估计GARCH模型以及标准化残差分析等。最终通过本次实验检验股票指数的GARCH效应,了解股票市场上的波动聚集效应。
1.2 实验知识点
计算股票收益率
股票指数的可视化
求基本统计量
绘制ACF图和PACF图
检验序列的ARCH效应
GARCH模型的拟合
GARCH模型的标准化残差分析
1.3 实验环境
R version 3.4.1
Xfce终端
1.4 适合人群
本课程难度一般,属于中级级别课程,适合具有一定 R 语言经管背景基础的用户,在巩固 R 语言基础的同时逐渐深入学习用 R 进行金融计量建模,进行金融量化分析。
二、实验原理
GARCH是一种用过去的方差以及其的预测值来预测未来方差的自回归条件异方差时间序列模型。其中异方差指方差随时间变化而变化,即具有异方差性;条件性表示了对过去临近观测信息的依赖;自回归则描述了预测值与过去观测值联系的反馈机制。
该方程可以求出模型的条件期望,投资者投资者在交易中所得到的信息依赖于过去时刻的收益以及过去时刻预期收益和实际收益间的误差;根据该方程也可描述模型的条件方差,它不仅是滞后随机扰动项平方的线性函数也是滞后项条件方差的线性函数,表明了过去时刻的波动对未来价格波动有着正向缓解的影响,从而模拟了波动聚集性。
限制条件是冲击过程{ht}存在有限方差的充分必要条件,其值大小反映了序列波动的持续性,即序列在过去时刻波动的特征在当前时刻被继续波动的程度。
保证了条件方差序列是非负的。